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APPROXIMATION OF THE NEWTON STEP BY A DEFECT CORRECTION PROCESS

E. ARIAN*, A. BATTERMANN I", AND E.W. SACHS_

Abstract. In this paper, an optimal control problem governed by a partial differential equation is considered. The

Newton step for this system can be computed by solving a coupled system of equations. To do this efficiently with an

iterative defect correction process, a modifying operator is introduced into the system. This operator is motivated by

local mode analysis. The operator can be used also for preconditioning in GMRES. We give a detailed convergence

analysis for the defect correction process and show the derivation of the modifying operator. Numerical tests are

done on the small disturbance shape optimization problem in two dimensions for the defect correction process and for

GMRES.

Key words, optimal control governed by PDEs, iterative methods, defect correction, GMRES, preconditioning,

Newton step, SQE

Subject classification. Applied and Numerical Mathematics

1. Introduction. Many optimization problems can be formulated as equality constrained problems with a special

structure. If one considers optimal control or optimal design problems, the variables are partitioned into the state and

control or design variables which we denote by _ and u, respectively. This leads to the following problem formulation

rain .Y'(4), u) s.t. h(_b, u) = O.
(_,u)

If one is interested in algorithms with a fast rate of convergence, one would tend to use Newton's method for these

problems. Note that this method can be applied in two different ways. Under appropriate assumptions, see Section 2.1,

one can solve for each control variable u the system equation h(_b(u), u) = 0 to obtain a state q_(u) which depends on

u. This is typical, when h represents a boundary value problem where the control variable is on the right hand side of

the differential equation. Then one can apply Newton's method to the unconstrained minimization problem

j(u) = >(6(u),u),
It

where the step s is computed by solving the linear system

for 8.
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Alternatively, one can keep all the variables (¢, u) and consider the necessary optimality conditions for the con-

strained optimization problem. Then one obtains the nonlinear equation in (¢, u, A),

h0u)(0)_=_(¢,u)+h_(¢,u)_ = o .
9v_,(¢, u) + h_x (¢, u)A 0

This equation can be solved by Newton's method. For the step one has to solve the linear system

_'(¢, u, _,)(v,s,w)r = -G(¢, u,,_).

This approach is the same if one applies an sequential quadratic programming method (SQP) to the constrained prob-

lem using the Newton multiplier update for the Lagrange multiplier, see [28].

It is important to note, that in both approaches at each step of Newton's method a linear system of equations has

to be solved which exhibits the same structure for both cases, see Section 2.3. Only the right hand sides differ in these

cases. If we denote the variables for the linear system by (v, s, w) then one obtains with the Lagrangian

c(¢, u, _) = _-(¢, _) + _× h(¢, u),

the linear system

)£,,¢ £_,_ h_ s = -£,, or - £,, .

he hu 0 w 0 h

Since the solver of these linear systems often requires the largest part of the CPU time of an algorithm, it is the

goal to utilize the special structure of the linear system in the linear system solver. This has been considered by [5]

where several preconditioners were used and compared numerically and theoretically. Further discussions can be

found in [10], [22], [26], [27], [18], [17], and [9]. In [16] the authors use a multilevel technique on the necessary

optimality conditions in connection with Newton's method under box constraints on the control. The structure of the

Newton system for optimal control problems is exploited in [15] to design special quasi Newton updates for problems

including differential equations. It is well known that one does not need to solve the Newton equations exactly at each

step [8] but only needs to decrease the accuracy in the residual as one approaches a stationary point of the optimization

problem. This is another reason why we investigate iterative solvers for the Newton equation.

The gradient of ,7 can be computed sequentially, see Section 2.9, by solving an adjoint equation after solving the

nonlinear state equation. The system for the Newton step cannot be solved sequentially, since its variables (v, s, w)

are coupled through the equations. This makes a Newton step quite expensive because an iterative procedure has to be

applied. In some applications the variables ¢ and u are separated in _- and h in such a way that the mixed terms in the

second derivative of the Lagrangian disappear, i.e.,

g4,u = _Cu¢ = O.

If one would omit the upper left term £¢¢, then the linear system matrix has the form

o o h:)o c_ h_ .
he h_ 0



TheresultingapproximateNewtonequationhastheadvantagethatit canbesolved sequentially, see Lemma 3.5.

Hence it can be applied in an iterative way to improve the accuracy of the solution of the Newton step. If one analyzes

its convergence, one obtains, see Section 3.3.4, that convergence is obtained if

-1
p(£,_,7-[- I) < 1,

where 7-(denotes the Hessian of ,.7 or the reduced Hessian of the constrained optimization problem in terms of _" and

h. Thus, _ is given by

(1.1) 7-[ : hXu h_ × L_4_ h_ 1 hu - hXu he × LC_u - _u4_ h_ 1 hu q- ,ff,uu.

Since the condition p(£_,17"/- 1) < 1 might be too restrictive we investigate the following strategy in this paper.

At first we replace £_,,, by a term/_u,, -- £uu (1 + e79), where 79 and e can be chosen properly. This choice

in general depends on the application under consideration. Then the system equation changes and we consider a

separation into an outer loop iteration and an inner loop iteration. The outer loop iteration is given by

(1.2) ( x/()nx( )£:¢¢ Z:,u hv v 0

£u_ £_, , h X_ s = -f-,_ + £_,,_e79 s '_ ,

he h: 0 w 0

which is solved by an inner loop iteration through

(1.3) ( x/ ( )0 £._,, hX_ X k+l -_- r -- _--'uq_ 0 0 X k •

he hu 0 0 0 0

Here, r denotes the right hand side of the original linear system equation. Thus the advantage of the sequential

solution of the approximate Newton step is retained. In Section 3.3 we analyze the convergence properties of this

iterative solver for the Newton step.

The choice of the operator 79 in the iteration (1.2), (1.3) is crucial for the convergence properties of the resulting

scheme. We suggest to make this choice by analyzing the optimization problem on the infinite dimensional level, i.e.,

before discretization is applied. The operator 79 can be derived approximately with local mode (Fourier) analysis of

the reduced Hessian, following [2], [3]. By that we are using the structure induced by the governing partial differential

equation (PDE) to accelerate the convergence process. Once 79 has been determined, it can be applied in various

manners to accelerate the convergence process, for example by taking the iteration matrix in (1.3) as a preconditioner

for Krylov subspace methods. However, we concentrate on the defect correction process (1.2), (1.3) because it is

simple to apply. Once a code is given for the solution of the state and costate equations, the implementation of the

defect correction process is reduced to successively solving the linearized state and the costate equations, with possibly

different right hand sides. The defect correction process is formally introduced in Section 3.

In Section 4.1 we apply this approach to an optimal shape design problem arising in aerodynamics. It is a boundary

control problem in which the shape of the solid wall is optimized by modifying the right hand side of the Neumann

boundary condition. It involves the solution of an elliptic boundary value problem in two space dimensions. By using

a local mode analysis of the reduced Hessian (1.1) which is done in Section 4.7, we obtain an operator 79 and an

indication of the convergence properties of the method for a small step size of the discretization. This is verified by the

numerical results and the rates obtained for the example. In Section 4.10 we present numerical results for the defect

correction process and for preconditioned GMRES using different choices of the operator 79. We obtain a significant

decrease of the residual in the first iterations. This convergence property is crucial in many applications that involve

computationally intensive cost functional evaluations and derivative computations.



2. GeneralApproach.Inthissection,ageneralequalityconstrainedoptimal control problem is addressed. The

necessary optimality conditions are given for this problem together with the optimality conditions for an equivalent

unconstrained problem.

2.1. Problem Formulation. We repeat the problem to be considered in its general formulation

(2.1) rain _(qS, u) s.t. h(_b,u) = 0.
(6,_,)

The constraint h(¢, u) = 0 denotes the state equation where ¢ is the state variable and u is the control, or design,

variable. Under the following assumption, the equation can be solved uniquely in ¢ for a given u. Also, the Newton

step for the minimization problem (2. l) is well defined. In our presentation we follow [l 9].

ASSUMPTION 2.1. Let X, y, Z be Hilbert spaces. Let fir: X × y --, _l and h: P( × 3) ---* Z be twice continuously

Fr_chet differentiable. Let he, the partial Fr_chet derivative of h with respect to ¢, be bijective and continuous. Let

h_,, the partial Fr_chet derivative of h with respect to u, be continuous.

REMARK 2.2. By Assumption 2.1, the inverse ofh_(Oc , u_) at the point (¢c, uc) exists. The derivative h_,(O_, u_)(_O)

of h with respect to ¢ at the point (¢c, uc) is linear in the increment &b. Thus, the inverse of h_ (O_, u_) also exists

and is continuous (see, e.g., [7]). Here and in the following, the superscript × denotes the adjoint operator or space.

We will in the following often denote h¢(¢_, u_) by he and apply similar conventions to other functions. Note also

that the relationship (h_ ) x = h¢ holds for he and the other considered functions (see, e.g., [7]).

The implicit function theorem (see, e.g., [30, p.150]) allows to define the following mapping ¢.

LEMMA 2.3. Let Assumption 2.1 hold and let ¢_, Uc satisfy h(O_, uc) = O. Let IX be an open neighborhood of

(0_, uc) E X × y. Then there exists a unique mapping c_:bl _ X that is twice continuously Fr_chet differentiable in

a neighborhoodld ofuc E Y and satisfies h(C(u), u) = 0 Vu E ld. Furthermore, the derivative cp' of O with respect

to u is given by

(2.2) ¢'(u) = -Gl(¢(u),u) W EU.

In the situation of Lemma 2.3 we can define the following unconstrained optimization problem which is equivalent

to the problem in its original formulation (2.1):

(2.3) min ff(u)=.T'(¢(u),u).

2.2. The Necessary Optimality Conditions. The Lagrangian function for problem (2.1) is given by

(2.4) £(¢, u, A) = .T'(¢, u) + A × h(¢, u),

where A denotes the Lagrange multiplier defined in Z ×, the dual of Z. The first order necessary optimality conditions

for a minimizer of problem (2. l) are given (see, e.g., [20]) by setting the gradient VZ: of the Lagrangian function Z: to

zero, i.e., by the equations

(2.5) state:

(2.6) costate:

(2.7) design:

Z:x= h(¢, u) = 0,

£_,= 9vu + h_ A = 0.

The gradient, g --- J'(u), is given by the following lemma (this is the necessary optimality condition of first order

for the unconstrained problem (2.3) (see, e.g., [201)).



LEMMA2.4.Let Assumption 2.1 hold. Define for u C 3]

i.) a function ¢(u) that satisfies (2.5) and

ii.) a function A(u) as the unique solution of the adjoint equation (2.6), i.e., of

(2.8) h_ (¢(u), u) A(u) = -St',_(¢(u), u).

Then the gradient 9 of (2.3) is given by

(2.9) 9 = ff'(u) = .T'_,(¢(u), u) + hux (¢(u), u) A(u).

Proof. The assertion follows from the chain rule and (2.2):

g- J'(u) : f_(¢(u),u) +¢,(u)X _=_(¢(u),,,)

= _,,(¢(u), u) + h_ (¢(u), u) (-h,_ × (¢(u), u)) _-_(¢(u), u).

2.3. The Newton Step. The definition of the Newton step for the unconstrained problem (2.3) requires the

computation of the second derivative of the objective functional ft. This, in turn, requires the differentiation of

the adjoint variable )_.

LEMMA 2.5. Let Assumption 2.1 hold. Then/_(u) defined in the adjoint equation (2.8) is differentiable, and the

derivative is given by

(2.10) A'(u) = -h_ × (¢(u), u) [Z2_,(¢(u), u, A(u)) + ¢'(u) L:¢¢(¢(u), u, A(u))].

Proof. Define a map n by n(A, u) = /:¢(¢(u), u, A), where by (2.8))_ = /k(u) solves t_(A(u), u) -- 0. Since

n_()_, u)(.) = h_ (¢(u), u)(.) is invertible by Assumption 2.1 (see Remark 2.2), the assertion follows by the implicit

function theorem. 17

With this result we can now express the Hessian of the unconstrained problem (2.3).

THEOREM 2.6. Let Assumption 2.1 hold. Then ,7 defined in (2.3) is twice Frdchet differentiable, and the Hessian

is given by

(2.11) 7-/= ff'(u) = h i h_ × £_¢ h¢ 1hu - hXu h_ x C4m _ Cu_ h_ 1hu q- _.uu.

Proof. Apply the chain rule to equation (2.9) and use equations (2.2) and (2.10). Iq

With Hessian, 7-/, and gradient, g, for problem (2.3) the Newton step, s, is given by

(2.12) 7-/s = -g.

REMARK 2.7. So far we assumed that the state and costate equations are feasible at every SQP step (reduced

SQP). Thus the Newton equation is given by (2.12). In case of a full SQP algorithm, where feasibility is not required

at each step, (2.12) has to be modified to

(2.13) 7-/s = -Z:u - t:u¢ h_l h + h Xuh_× f-._V hca h - h X_h_ × f-.¢.

The right hand side of (2.13) consists of the residual of the design equation (this term is equal to the reduced gradient,

g, when the state and costate equations are solved), two terms that vanish when feasibility is achieved, i.e., when

h(¢, u) = 0, and the last term that vanishes when the costate equation is feasible, i.e., when £:_(¢, u, )_) = 0.



THEOREM2.8.Let Assumption 2.1 hold. The Newton step, s, defined by (2.12) can be computed by solving the

self-adjoint system of equations

(2.14) £'u¢ £_ h x s = .

he hu 0 w

REMARK 2.9. In case of a full SQP on a nonlinear problem, the right hand side of (2.14) should be modified to

-(£_, Eu , £ ;_) T to be consistent with (2.13).

Proof. For s E Y define v E X and w E Z × by

v = -h_lhus,
(2A5)

w = -h,_ × (Z:¢_v+/:V_,s).

Then by (2.11) and (2.12) the Newton step, s, satisfies the equation

0

= £_ v + Z:u,,8 + hl (-h_ × Z:_ v - h_× Z:_ 8).

We have shown that solving (2.12) for the Newton step, s, is equivalent to solving (2.14). Writing the right hand

side of (2.14), (0, -g, 0) T, as (rl, r2, ra) T = r, we denote (2.14) by

(2.16) /Cx = r,

and the exact solution of (2.16) by x*. Thus, K_is defined as

£_, £6,, h_ )
(2.17) K_= /2_,¢ £.uu h x •

he h_, 0

NOTATION 2.10. In the following, the vector of unknowns (v,s,w) T will often be referred to as x. For the

description of iterative processes, the superscripts c,+ will denote current and new iterates, respectively, e.g., x c the

current x-iterate. The solution of an iterative process will be indicated with the superscript *, e.g., x*. In addition, the

error in the vector x it"denoted by e; specifically, ec is the error in the current x-iterate. The error in the components,

e.g. s, will be denoted by e_. Thus, for instance,

(vc)(v)(c)%X c X* 8 c 8" c _ e c.

w c w* c
ew

3. The Solution Method. In order to solve for the Newton step, a defect correction process is employed. The

defect correction process (see [12], [24]) is derived in this section. Convergence of the process is governed by the

choice of approximating operator/C. A detailed discussion and convergence analysis is done in this section.

3.1. The Defect Correction Process. Solving for the Newton step, i.e., solving (2.12), is equivalent to solving

/Cx = r in (2.16). The idea of the defect correction approach is to replace/C by a simple approximation/_. The

solution of the approximate problem

(3.1) /Cx =



isthenreachediteratively.It isessentialthat_-1 berelativelysimple,i.e.,thatit ismucheasiertofindasolution
to(3.1)thanto(2.16).

Wenowintroducethedefectcorrectionprocess.
ASSUMPTION3.1.Guided by the treatment in [12], we assume the following.

i.) Let/C : £ D 7:) ---, D C _ continuous and bijective, £, £ Hilbert spaces, 79, D closed subsets.

ii.) The defect

(3.2) d(_) =/C _ - r

can be evaluated for approximate solutions 5: G 79 to all neighboring problems. The neighboring problem is

to find YcE 79 with ICY: = _ for given _ E _).

iii.) The approximate problem (3.1) can be solved uniquely for _ G Z), i.e., we assume the existence of an approx-

imative inverse IC- 1 of lC such that _-1 1Cx _ x for x E l:) and ICIC- 1_ _ f for _ G D.

Assuming that we know an approximation x c E D for x* and that we have computed its defect d(x _) = ICx _ - r =

/C x _ -/C x*, this information can be used for the computation of an update x + by means of solving a problem (3.1).

The error e c = x _ - x* satisfies e _ = 1C-1 (r + d(xC) ) - IC-1 r = IC 1 d(x_). Instead of performing the difficult

solve with/C, we use the approximation/C to compute U = /_-1 d(xC) and use this quantity as a correction for x c.

The iterative usage leads to the scheme

(3.3) x + = x _ + _c = (I - f:-I 1C)x c + x o

with x ° = /C 1 r as initial iterate. We define R by the relation R := K: - _ and call/C + R a splitting of K_. With

this notation we write (3.3) as

(3.4) _x +=r-_x _

to indicate that we do not really apply _- 1 but solve the system with/C.

3.2. The Modified System Defect Correction. We will in the following apply the defect correction process not

precisely in the way it was derived in the above Section 3.1, but introduce two changes. First, the defect correction

process described in Section 3.1 can be nested, i.e., an inner defect correction loop can be used to find the solution to

the system (3.4) that has to be solved in each step of an outer loop. This is the point of view we take in the following

presentation. Secondly, we modify the system (2.14) that we are interested in solving with the help of an additional

operator 79. We call this approach the modified system defect correction process.

We now turn to the splittings we propose for the solution of (2.14) by the process (3.4). The choice of/_ in the

splitting K_ =/C + _ is crucial for both applicability and convergence of the iterative scheme (3.4). Our choice of

is motivated by the structure of the underlying system (2.1 4). We now supplement Assumption 2.1.

ASSUMPTION 3.2. Let _Cuu 5_ 0, Lu-_ exist.

We will in the following see that the part/_,,,, in the system/C is crucial for the performance of the solution

method. The convergence requirement is

--1
p(£,u_7"t- I) < I.

In general, Z:,,u will not model the Hessian, 7-/, very well, and convergence is not necessarily ascertained. To ensure

convergence, and to allow for convergence acceleration, we introduce an operator 79, which will be used to modify the

system. The choice of 79 will be discussed subsequent to the convergence analysis in Section 3.3.

ASSUMPTION 3.3. Let an operator 79 on 3; and a real scalar e exist such that I + e79 is invertible.



Here, I is the identity on y. Note that Assumption 3.3 is necessarily satisfied for small e. The operator T_ will in

general be applied to modify Z:u_,. As an abbreviation we use

c,,,, = £,,_ (/+ ,p).

Thus,/:_,u is naturally regained as/2_,,0.

3.2.1. Outer Loop. To solve the system KSx = r in (2.16) efficiently, we modify KS,KSgiven in (2.17), through

replacing £uu by Z:_,,, = £uu (1 + e79) to

(3.5) /:o = c_ c_,_ h_ .

h_ h_ 0

With

0 0 0)
(3.6) T_o= 0 -/2,.,ueP 0 ,

0 0 0

the equality/Co + _o = KSholds so that _o, _o define a splitting of KS.

For the solution of KSx = r we start a defect correction process given by

(3.7) £o _+_ = _ - _o xB,

which is equivalent to

(3.8)

n+l

( x)/) ( /£ee /:e,_ he v 0

£-uO t:u,_ hXu s = -go + £uue79s n •

h_ h_, 0 w 0

We start at n = 0 with a starting point v °, s °, w °. In each step of this defect correction process, a linear system has to

be solved. One possibility is to do this via an inner defect correction loop.

3.2.2. Inner Loop. For the inner loop we define a splitting of the system matrix _o in (3.8). The splitting

_o =/el + T_s we propose is given by

(3.9) ( x) ( )0 0 h¢ £¢¢ Z:_ 0

_s = 0 £,,,, h_ , ks = £,,_ 0 0 .

h¢ hu 0 0 0 0

The corresponding inner loop is

(3.1o) #:, x,_+_ = _o - n_ x,_ ,

where ro is the right hand side of the outer loop, i.e., ro is given by ro = r - _o x_9. This amounts in each step to

(3.11)

k+l

0 £.,,,_ h_ x2 = -go + £_,uePs '_ - £_,,xka •

h, h_, 0 x3 0

Starting at k = O, use x ° = x_. Set the solution x_ of the inner loop as the new outer loop iterate z_9+ 1



REMARK3.4.For the splitting defined by (3.9), the iterative scheme (3.4) can be viewed as applying (forward)

Gauss-Seidel on the system

(3.12)
h_ £,,, Z;,e )
hx /_u,, Cue •

0 h_ ha

Because (3.12) is, even for c = O, a non-selfadjoint permutation of system (2.17), symmetric Gauss-Seidel (i.e.,

forward Gauss-Seidel foUowed by backward Gauss-Seidel, see [11], [14]), does not lead to a selfadjoint operator

A4 = I - IC-11C in (3.3).

3.2.3. One Inner Iteration. If only one inner iteration is performed, inner and outer loop can be combined in

one closed formula

(3.13) IC.x k+l = r - _x k.

This is described by (3.11) with sn replaced by x_.

7"_= 7"_i + 7go, and given by

The corresponding splitting is /C = /C + _ with /C = _I,

(3.14) /_ = 0 /2_,,, hx , 7_ = /2uS -/2_,_ e79 0 .

he hu 0 0 0 0

3.2.4. Applicability. With the splittings defined in the preceding Sections 3.2.2 and 3.2.3, the solution x + of the

scheme (3.4), i.e., to/_ x ÷ = r - 7Z x c, can be computed at the cost of solving three linear subsystems.

LEMMA 3.5. Let the Assumptions 2.1, 3.2 and 3.3 hold. The solution to the systems (3.10) and (3.13) can be

accomplished at the cost of solving three linear subsystems.

Proof. Since the systems are biocktriangular, back-substitution furnishes the solution.

1.) The solution x k+ i to (3.13), i.e., to/C x k+l = r - _ x k , can be computed by successively solving the systems

= h X k+lh, Xlk+l r3- u 2 •

k+l
2.) The solution x_ to (3.10), i.e., to K;I x_ +1 = ro - T_I x_, can be computed by successively solving the

systems

x _k+l
he xt, 3 = ro,1 - _¢_¢ x k - _,eu x_,21,1

_u • _k+lXl,2 = to,2 -- if-uS xk x _k+l, 1,1 -- hu Xl,3

h a x k+l1,1 "= ro,3 -- hu _k+l_ci, 2 •

[7 We now turn to the convergence analysis of the iteration (3.4) for the proposed splittings.

3.3. Convergence Analysis. The convergence of the defect correction process depends on properties of the

iteration operator .A4 = I - KS-1/C = -KS-1T_ in the process (3.3). First, we state the basic requirement on .A4 in

Theorem 3.6. We then address the necessary and sufficient conditions for convergence of the modified system defect

correction for the processes described in Sections 3.2.1, 3.2.2, and 3.2.3. For this, we investigate the convergence-

governing matrices .Ado, MI, and M of the processes. The composing operators are derived from the respective

splittings defined in (3.5) and (3.6), (3.9) and (3.14).



The basic convergence requirement on .Ad is described in [30, Cor. 1.13].

THEOREM 3.6. Let Assumptions 2.1, 3.1, and 3.2 hold. lf the condition

(3.15) p(.A4) < 1

holds for the spectral radius p of .M = I - lC- IlC in process (3.3), then the iteration converges, for every r and for

arbitrary initial element x °, to a unique solution x* of (2.16).

In the following we often need the invertibility of the reduced Hessian, 7-/, and of a modification, 7-l, = 7-I +

L:_,,eP. The invertibility is guaranteed for small e under the usual second order sufficiency conditions for optimization

problems because these require, with some constant c,

(3.16) c¢(_,_/,¢**//(¢*, u*, _*)(_¢, &)(_¢, &) _>c II(_¢, &)II 2

for all those (5¢, 6u) that satisfy he 6¢ + hu 5u = 0. The last condition allows to substitute 5¢ = -he 1h: 5u, thus

leading to

hx h¢ ×/_4,¢h¢lhu( 5u, _u) - hXuhe ×,C4_u(Su, _u) - _.uchclhu(_U, _u) -]-P-.uu(_u,_u)

= 7-t(Su,au) _>c (llh_ xh_, 6u]l2 + II&lt2) _>c II&ll2

Therefore, 7-/is invertible and so is 7-l, for small e.

ASSUMPTION 3.7. Let a real scalar e > 0 exist such that 7-[_ =- 7-( + Luue7 _ is invertible for 0 < e < _.

In addition we will need the following lemma to prove the central statements in Theorems 3.9, 3.10, and 3.11.

LEMMA 3.8. Let Assumptions 2.1 and 3.7 hold. Then the inverse of the operator IC defined in (2.17), written as

K:ml =

/ _111 _121 K:I31
K_I2× K_221 K_231

JC_ × K:_ × K:a_:

is given by its entries

K:_-II -1 -I x= h_ h,,7-/ h,,h; ×,

]C11 : h;lhuT'_ -1 ,

-: -1 x h_ x Z:_,¢h;: h;:huT-l-l_.u_h¢:lC{31 : h_ : - h e_ h_ 7-l h,, + ,

]Cg_ -a × -× -: _ _-:£_hgl= 7-I h_,h¢ £_h_

= -x -: -: x - h-_X£.4_,fl-l-:£.,,¢h-¢l]C331 -hcX£¢_¢h_ 1 +he, £¢,¢h¢ h_,7-I h,,h¢×£_¢h¢ _ +

- h_ x £vuT-l- _h x h_ x f_.¢¢h_, 1 _ h_ x £V_, h_ _huT-I-: £,,¢ h_:

Here, 7-l, explicitly given in (2.11), denotes the reduced Hessian of the constrained problem (2.1). For the operator

1Co in (3.5) which differs from IC only in the central entry f-.,,,,, the inverse ts given by

--I 1(_--1 1_-1 )

ll,e 12,, 13,,

= PC --× _--1 K:-I
_0 1 12,_ 22,, 23,, 1

jl_--X --x K_-I
13,_ J_23,, 33,e

where the entries differ from those ofIC-: insofar as TI is replaced by 7-l_ = 7-l + f-.uueP = hx h¢ x £4,¢ h¢ 1 hu -

h_ hg × C_ - &_ h_: h_ + C._(I + _).
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3.3.1.Convergence Analysis of the Outer Loop. We now investigate the convergence properties of the outer

loop. The convergence of z n = (v n, sn, wn) T can be characterized by the convergence of the sequence s n. This is

important because in the application (see Section 4) x is a vector which consists of functions defined also on the whole

two-dimensional domain whereas s is only defined on the boundary.

THEOREM 3.9. Under Assumptions 2.1, 3.2, 3.3 and 3.7 the following statements hold.

1.) The iteration (3.7) converges if and only if the iteration

(3.17) sn+l ~ -1 n= IC22,_£_,_,_PS + f2

converges, where _ = 1Colt.

2.) If the spectral radius of 1 - (TI + £u_ eP) -1 _, defined on the boundary, satisfies

(3.18) p(1 - (7"[ + £uu e_)-i 7-/) < 1,

then the iterates o]'(3.7) converge to the solution x* of(2.16).

Proof. Denoting/Co 1 by its entries, _-1ij,, (i,j = 1,2, 3), we see that ./%4o = I - _ol/C is given by

(3.19) .Mo =

where

0 M1 0 /
0 M2 0

0 M3 0

for i : 1, 2, 3. By the iteration (3.7) we have

÷1 = £:31r+ (z - £o17zo)x3 : g:3 r + Mox3

or by (3.8) with z_ = (v n, s n, wn )T

V n÷l : M1 8 n At- T1 ,

(3.20) 8 n+l = M2 sn + r2 ,

W n+l : M3 s n + r3,

where e = /_olr = (el, ÷2,73) T. It is immediate that the convergence of the sequence x_9 = (v '_, s", wn) T is

equivalent to the convergence of sn which proves the first statement of the theorem.

The entry M2 is given by, see Lemma 3.8,

M2 = _2_el_uue7 ) : 7[_-11_uue7 ) = I - (H q- £uu eP) -1 7-/'

By Theorem 3.6 the condition p(M2) < 1 is sufficient for convergence of the sequence sn and by part 1 .) also for the

convergence of x_. [3

From the result (3.18) it can be seen that we can set the convergence rate of the outer loop by choosing e79

appropriately. However, the choice of eP influences the convergence of the inner loop as well.

3.3.2. Convergence Analysis of the Inner Loop. The convergence properties of the inner loop are described in

the following theorem.

THEOREM 3.10. Under Assumptions 2.1, 3.2 and 3.3 the following statements hold.

11



1.) The iteration (3.10) converges if and only if the iteration

(3.21) X k+l = (1 -_- £V) -1 (Z_.It_1./--1 -- I)xk __ 42

converges, where _ = ff_llro .

2.) lf the spectral radius of the boundary operator ( i + eT_)-i -1(Euu 7"[ - 1) satisfies

(3.22) p((I + e'P) -1 -1(c _-z))<l,

then the iterates of (3.10) converge to the solution x*t.

Proof The inverse of the operator/Ct defined in (3.9) is given by

( h_lh :-l/_x _h;l -1

,-,-,,,_'-u h_ × h,_£_,,,

(3.23) fS_-t -1 × -1= -C,,,h,, h_ × £u,,

hi × o

Thus, the operator 34 z = I - _}- 1/C in (3.3) is for the inner loop explicitly given by

-1 -1 × -1 -1 × -×

he h_,£.,,,_(h,,h¢×£_¢-f-._,_) h4, h,,f_._,,_h,,h_ £¢_,

(3.24) 34] = _£u,_(h u-1×h_×£¢, - £u_) -£_,,_huh4,-1× -x£4_,,

Denoting the following composed operators by G, Q, N, C, U,

(3.25)

341 can be written in the form

G = -he 1 hu,

Q = -L_, 1,(h_ h; × r._,_- r._),

N = -£ff),h x h; × £4,_,,

C = h i × £'¢e,

U = h i × £.4,,,,

0 .

0

o)0 .

0

GQ GN 0 )
(3.26) 34! = Q N 0 •

C U 0

Hence the inner iteration with x_ -----(X_,l ' _1,2"k _1,31_'k"_TCall be written as

x k+l =GQxk,1 +GNx _ +41,1,1 1,1

(3.27) _k+l = Qx k 1 + Nxk,2 + 42,a;l,2

xk+l = C Xkl,1 _]_ U Xkl,2 ..1_ 43 .1,3

Multiply (3.27) by G and substitute the resulting equality into (3.27). This yields

_k+l ---_ Gxk+l(3.28) x_,l 1,2 + rl -- Gr2.

From this equation it is clear that if x_, 2 converges, then so does x_, 1 and by (3.17) also x_, 3.

To show the second statement, use (3.28) in the form x_,_ = G:c_, 2 + _ - G42 to eliminate x_,_ in (3.27) which

gives

xk+l N) x_, 2 421,2 = (Q G + + + Qfl - Q G e2.

12



By definition (3.25), the operator Q G + N coincides with (I + _7_) -1 -1(£u_ - I) (see (2.11)), because

QG + N = Cu, 1,hX_ h_ × Eeoc h_ 1hu - £u, 1`Cue he 1h_ - _-.u, XehXu h_ x I_,

= (I + ,v) -1 (c 2 - 5.

Therefore, if p((1 + eT')- 1 - 1(£uu 7-[ - I)) p(Q G + N) < 1, then by Theorem 3.6 the iterates x k converge and by1,2

the first assertion also the sequence x/k.

3.3.3. Convergence Analysis in Case of One Inner Iteration. In case only one inner iteration is performed,

convergence is determined as follows.

THEOREM 3.1 1. Under Assumptions 2.1, 3.2 and 3.3 the following statements hold.

1.) The iteration (3.13) converges if and only if the iteration

-1
s '_+i = (£.,,,,7"t - I) sn

converges.

2.) If the spectral radius of the boundary operator -1_u,fl-[ - I satisfies

(3.29) p(£_,1_7-I- I) < 1,

then the iterates in (3.13) converge to the solution x* of (2.16).

Proof The inverse of the operator/C =/Cz is given in (3.23). Thus, in this case where only one inner iteration is

performed, M = I -/C-1 t5 is given by

( h_lhu_C_,,l(hXuh_X£o¢ - £_,4, )

--i --I Xhe hu£.u,,(hu h_×£.4,,, + F.uu _79) 0

)--1 ×-c + o .
h_ x£_,, 0

We denote the composed operators by G, Q, C, U as before in (3.25) and let N1 be defined by

N1 = -/2_1, (h_x h_ x/_¢u + tT,,u eta) •

Then .M can be written in the form (3.26) with N replaced by N1. The proof follows the same lines as for the one of

the previous theorem.

By definition of G, Q, C, U in (3.25) and of N1 above, the operator Q G + N1 equals

--1 × --1 --1 X h@ _@u -1f-'u,e hu h_ × £:¢¢ he I hu - £u,e £u¢ h_ 1 hu - £'u,e hu × - £u,e £uu eP

QG + N -1= -- £._,,_ F.uu e79
-1

= z:,_,,(_ - c_) - -i£_,,,£_,,, eP
-1 --1

= (I + eP) £_,_,7-I - I
-1

= £._,,_7-[ - I.

3.3.4. Discussion of Y'. The preceding convergence analysis shows that if T' is not present, or, equivalently, if

c -- O, there is no outer loop in the nested defect correction process. In that case, the convergence requirements (3.29)

and (3.22) coincide and are given by

-1
p(C,,,,_- I) < 1.

13



Ingeneral,E,,_, will not model the Hessian, 7/, very well, and convergence is not necessarily ascertained.

In order to solve the system (2.14) efficiently with the defect correction approach, we modify (2.14) through

replacing E_,, by E_,,_ = E_,_, (I + eP). We have seen in the preceding Sections 3.3.1, 3.3.2, and 3.3.3, that the

convergence rate of the processes can be determined by appropriate choices of 7_. However, finding e_ that performs

well both in the outer and inner loop requires solving conflicting tasks. Theorem 3.9 suggests that £_,u e7_ should

be small in the sense that 7-{+ E_,, e7_ is only a small perturbation to 7-/. Theorem 3.10 indicates that E,,,_ should

approximate 7"/- Euu fairly well, because (I + e7_)- t (Et,_,-17/_ I) = E_,,_-1(7-{ - /_uu) is the convergence-governing

part. The problem to be solved is

miD. ID_ax {p (I -- ("]_ -_ /_uu £_D) -1_'_) ,P (I --_ (_)-1 (_uuT/ _ I) }.-1
7_

If only one inner iteration is done, E_,,_ is required to approximate H as described in (3.29). In both situations, i.e.,

in the nested defect correction and in the case with only one inner iteration, some knowledge of the operators involved

is necessary for an appropriate choice of 7_. However, the defect correction process with one inner iteration is easier

to apply than the nested defect correction process (because it allows for a closed representation), and thus preferable

whenever applicable. If there is not much information available on the Hessian, choosing a "small" eP and applying

nested defect correction seems to be more promising. We will discuss the choice of 7v for our example problem in

Sections 4.5 and 4.7.

4. Application: The Small Perturbation Potential Problem. We consider an optimal control problem governed

by a partial differential equation. The example problem is motivated by problems of aerodynamic optimization. In the

following, we derive the example problem and state the equations relevant to the approach delineated in Sections 2

and 3. Subsequently we turn to the discretization and the finite-dimensional solution of the optimization problem. We

include a convergence estimate for the example using local mode analysis.

4.1. The Small Perturbation Potential Equation. We start with a short derivation of the state equation that

governs our optimal control problem. We assume inviscid irrotational flow modeled by the continuity equation,

v(my) = 0,

where p is the density of the fluid and ff the velocity field. The potential function, (b, is defined with the relation

_= _74_.

The density is related to the potential by the isentropic density law (see, e.g., [ 13]). We consider a slender body aligned

with the z-axis, and define a perturbation potential ¢ by

= U_(x + ¢),

where Uo¢ is the free-stream velocity. Under the assumption of a dominating x---component of the velocity field,

and neglecting terms that are proportional to 4 2 and to eu2, the following first-order transonic small-perturbation is

obtained (Prandtl-Glauert equation):

(1 - M_)¢.. + euy = 0.

If y = u(x) is the equation of the surface of the slender body, it is possible to set the surface boundary condition on the

x-axis, that is at y = 0. The presence of the slender body will appear in the computation only through the boundary

condition

(4.1) v = (Uoc + u)u_ _-, U_u_.

14



In terms of the perturbation potential, (4.1) is given by the normal derivative

Cn : Ux"

The boundary conditions at the far-field for the perturbation potential are set such that it does not affect the far-field

velocity.

The small perturbation potential equation has been for a long time the basis for potential flow theories as it is a

simplified form valid for flow fields along slender bodies aligned with the x-axis. We turn to form a simple optimal

control problem based on that model.

4.2. The Optimal Control Problem. The small-perturbation potential problem allows us to study a shape op-

timization problem with a boundary control model defined on a fixed domain, thus avoiding the complication of a

changing geometry.

We consider the following minimization problem,

(4.2) rain ]Jr _1 fF fr(¢,_,) _ (¢_ - ¢d)2 ds + -_- u2ds+_2 ¢_uds,

subject to the following state equations,

(4.3)

(1 2 =- M_)¢xx + Cuy 0 in f_ = (0, 1) 2,

Cn = onr={(x,0):0<x<l},
Cn = 0 on Flt2Fr,

O = 0 on Ft.

Here, the parts of the boundary Ft, Fr, and Ft are given by Fl = {(0, y) : 0 < y < 1}, Fr = {(1, y) : 0 < y < 1},

and Ft = {(x, l): 0 < x < 1}.

We now give a short explanation of the different terms in the cost functional (4.2). The first term is proportional

to a pressure matching term since in the small disturbance model the pressure of the flow on the slender body is

proportional to the derivative of the potential in the flow direction, Cx. The desired "pressure distribution", cd, is

given. The second term is a penalty on the control and r/1 is a parameter. The third term is artificially introduced

to the objective function to better model the structure of problems in applications since in aerodynamic optimization

problems often non-zero terms £uV and g¢_ are present.

4.3. Existence and Uniqueness of an Optimal Control. Let us assume that the design, u(x), belongs to the

subspace of functions that can be spanned by the basis {sin(27rkx)}_= 1, i.e.,

(4.4) u(x) = _ uk sin (2rrkx),
k--1

_2 nwhere { k}k=l are real numbers and n is a positive integer. For that choice of u(x) there exists a solution ¢(x, y) of

the minimization problem (4.2) subject to the state equation (4.3) of the form

(4.5) ¢(x, y) = _ UkCk(Y) cos (27rkx),

k=l

where then functions Ck(Y) are given by

1

(4.6) Ck(y) = _ (- tanh(27r'yk) cosh(2rr-yky) + sinh(2rr3,ky))
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for 7 = v/i - M_. By inspection the above ¢ satisfies the state equation (4.3).

REMARK 4.1. By the solution (4.5) the operator h6 has the symbol (27rk)/_bk(y). (For the definition of the

symbol of a differential operator see, e.g., [21], p.38.) Since the Fourier transformation is a homeomorphism we

conclude that the operator hez satisfies Assumption 2.1.

THEOREM 4.2. There exists a unique solution u*(x) to the optimal control problem (4.2) subject to the state

equation (4.3).

Proof Let us denote the vector of design coefficients by UN: UT = (ill,''', Un). A direct substitution of the

solution (4.5) into the cost functional (4.2) results in a leading quadratic term of the form uTQuN with Q being a

positive definite matrix. This proves that the minimization problem has a unique solution. [3

4.4. Optimality Conditions and the Newton Step. The first-order optimality conditions of the problem (2.1),

as outlined in Section 2.2, are the state, costate, and design equations (2.5), (2.6) (2.7). The state equation is given

in (4.3). The adjoint equation for this problem takes the form

(1 - M_)As, + Ayu =

(4.7) An =

An =

From the design equation (2.7) we get the gradient

(4.8) 9 = -As+rhu+r/2¢s

The Newton step satisfies (2.14) with the operators

{ 01_ }, £,,_,=rll-/Ir,

and

0 in f_,

_(¢_ d- G_) + _ us on F,
0 on OFt - F.

on I'.

01. }£_'_ = co" = rnO_lr

x { (1-M2)O*_+Ouu]a }h_ =h_ = -0,_lr '

Explicitly, the Newton step, s, satisfies the following system of PDEs:

(4.9) (1 - M 2)wx_ +wuy = 0
Wn -- Vx.:_+ rl'2ss = 0

o1_ }

in f_,

on F.

(4.10) rllS +_vs - ws - 9 (x, 0) on F,
w(1) = 9(1).

(4.11) vn-Ss = 0 (x,O) on l",

s(0) = 0.

The defect correction process described in Section 3 will now be applied to the example problem introduced in

Section 4.2. Convergence of the solution process (3.4) is governed by the singular values of the operators .Mo, .Mz,

and .M derived in Sections 3.3. l, 3.3.2, and 3.3.3. The operators for the small perturbation potential problem are given

in Section 4.4 so that .Ado, .MI, and M are easily found for the example.

Knowledge of the operators allows to choose 79 such that small convergence rates are obtained. We now use local

mode analysis of the convergence-governing operator to choose the operator 79 . Similar analysis has been introduced

in the past to approximate the reduced Hessian of optimization problems governed by PDEs (see, e.g., [1 ], [2], [3]).
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4.5. Choice of 79 by local mode analysis of the PDEs. The local mode analysis is performed locally around a

point on the boundary F, ignoring the boundary conditions on 0[2 - F. Thus for a boundary value problem, as we

have, it is only an approximation. We deliberately do not insist on the exact analysis since it can not be done in general

applications while the given analysis can be applied (after linearization and freezing of coefficients when the problem

is nonlinear).

We choose to use the splitting of Section 3.2.3, i.e., the case of one inner iteration. We have seen in that section

that convergence depends on the eigenvalues of the operator 7- = - 1£_,,,7-( - I. We study one Fourier component of the

error,

e(x, y) = _(021, ¢02) ei(wlx+w2Y)"

The interior equation in (4.3) relates 02a and w2 by

M£)w 1 + w22= O.(4.12) (1 - 2 2

We choose the decaying mode solution for Equation (4.1 2),

(4.13)

The boundary equation implies that

022 = iv/]- - ML I0211.

V_ - ML I0211_ : i021 _'

We arrive at the Fourier symbols of the operators in the convergence-governing operator 7-:

(4.14)

^x
h_, = he = V_ - M_ 1021l,

h_ __ ^ X-- -h u = -i021,

= -bxx : 022,

2-_,,, = -_.,,4, = -rn i02t ,

f-_uu : 711 •

These imply that the Fourier symbol of the Hessian is given by

.... 022

72[= hx_ h_ × _4_¢_he 1 hu - hxu h_ × £¢u - _.u¢ he I hu + _uu = 027 - 2_]'2_'-_]+ rll.

1
By (3.29), the choice of the operator 7_ is such that 79 _ £_,_ 7-/. We obtain the approximated symbol of the desired

operator 79 as '

(4.15) 75 = 1 (022 022 .-,
711 10211

Since the second term in (4.1 5) does not correspond to a differential operator, and because it is of lower order than the

first term, our first approximation of 79 is given by

(4.16) 79 = -1D::x.
rh

We now turn to use the same local mode analysis to approximate the asymptotic convergence rate of the defect

correction process for low mesh size h. The above symbols (4.1 4) imply that the symbol of the convergence-governing

operator 7- is, where e75 is taken to be Gw1,1 :

^--I ^ ^ --1 ^--I ^= e79) £,_,, 7-( - 1.= Z:u,_7-i - 1 (1 +
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UsingParsevalidentityweestimateanupperboundfortheconvergencerateof the iterates of the defect correction

process by

!

(4.17) #<max 9*(w)9(w ,

where _ = -_ for k ranging from 1,..., n. Here, n is the number of grid points on the boundary F, and T* is the

complex conjugate of T.

4.6. The Discrefization. We define a uniform grid on the domain t, containing m grid points. The perturbation

potential, _b, is defined on the grid vertices, and the control is defined on the mid-interval points on the boundary F,

i.e., ¢ E H_m and u E 2R", with n = _ - 1. We then apply a second order finite difference discretization to the

problem (4.2), (4.3). The stencils can be found in (4.24) and (4.26). The resulting finite dimensional problem is to

minimize a quadratic functional under linear constraints,

(4.18) min F(¢N, uu) s.t. ACN + BUN = b,
(evu,*'u)

where the discretized objective function can be written as

1 ¢TH¢¢ eN + 771 T T H eTc + uTd.
(4.19) F : -_ "_ UNHuu UN + ?"p2(/)N Cu UN 4-

The discrete Lagrangian is given by

(4.20) L((ON,UN, AN) ----F + ATN(A¢N + BUN -- b).

Note that for this (quadratic) problem the second partial derivatives L¢_,, L4,,_ and L,,,, of the Lagrangian coincide

with H0¢, H4,u and H,,,,, respectively.

Applying the first order optimality conditions (Karush-Kuhn-Tucker conditions, see, e.g., [20]), we have to solve

the system

where

_12L,_¢ _11L,_ B T UN = -d

A B 0 AN b

CN E .QT_, UN E _n, ,kN E ._:dm, C E IRm, d E Kd'_, b E ._m,

L_,¢ E 1_l''xm, Lug, E IR nxn, L¢_, E j_rn×n, A E _m×rn B E ._l m×n.

If A is invertible, the discrete state equation ACN + BUN = b can be solved for CN, CN(UN) = A-l(b - BUN).

Thus, we can define the discrete unconstrained problem

(4.21) rain J(uN) = F(¢N(uN), UN).

In order to get the gradient, gN, of the unconstrained problem (4.21), the state and the costate equations must be solved

exactly. This means that for a given control uu the following set of equations has to be satisfied,

(LeVA AT)(¢N)=(--c--L4_uUN) "0AN b - BUN

Then the gradient can be computed as

9N = BT,'_N + 7_1 LuuUN 4- '02 Leu(gN + d.
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TheHessianofthediscreteunconstrainedproblem(4.21)isgivenby

(4.22) H = B T A -T L¢¢ A -1 B - Luea A -1 B - B T A -T L4,_ + L_,,.

The Newton step, SN, of the discretized unconstrained problem (4.21) can be computed by solving the system

(4.23) L_¢ L_ B T SN = --gN •

A B 0 WN 0

4.7. Choice of 79 by local mode analysis of the Finite Difference Equations. We now perform the local mode

analysis, similar to the local mode analysis in Section 4.5, taking into account the specific discretization. By analyzing

the finite difference equations we hope to get a better approximation of the reduced Hessian and as a result a better ap-

proximation of the operator 79. Note that although the operators analysed in this section are finite difference operators

and not differential operators, we still denote them as before to avoid excessive notation.

The discrete interior equation has the form

(4.24)

where

a¢i,j + b(¢i,j+l q- (hi,)-l) q- c(¢i+l,j + ¢i-l,j) -- 0

1

b= h_, c=(1-ML)b, a=(1-M2)(-2b)-2b.

We study one Fourier component of the error,

e(x,y) = 6(01,02)e i(01 _+02_)

where the mesh sizes in the x- and in the y-directions are assumed to be a constant h. The discrete interior equation

(4.24) relates 01 and 02 (a + 2(ceos01 + beos02) = O) to

a + 2c cos 01 ].(4.25) 02 = cos-l[ • 2b

The discrete boundary equation has the form

1

(4.26) a_gi,j + 2bed,j+1 + c(¢i+l,j + ¢i-l,j) -_- -_(ui - ui-1).

In terms of the Fourier component of the error in ¢, this implies

2i sin(Oa
(a -_- 2ccosO 1 q- 2bei°_)@(O1,02) = _ _-) u(O1) ,

(4.27)

or equivalently,

(4.28) 2i sin(_) ft.2bi sin 02 ¢ = -ff

Using the identity sin cos- 1x = v/] - - x 2 together with Equations (4.25), (4.27), and (4.28), we arrive at the symbol

of the operator he, given by

^× i _ (a+2ccosOx) 2.
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Theotheroperators in the convergence-governing operator, - 1L_,_H - I, have the following symbols:

(4.29)

hu - _x _ 2i sin(0_x i 42(1_ COS01)-- -h,, -----h- _)=-_

= -zL = n2

_uu :" ?}1.

The reduced Hessian (2.11) contains the operator h e 1h,, and its adjoint. The expression hg 1h,, can be simplified to

?-(1 - ML) - ½(1 - M_)2(1 - cos01)

This leads to our second choice of the operator P,

(4.30) 1 ( h2 2 2 )-iV=--- (1-ML)I+-_-(1-M_) Dxz D_x.rh

Having chosen the operator T', the asymptotic convergence estimates follows as in Section 4.5.

4.8. The Defect Correction Process. On the discrete level, the linear system (4.23), which we denote by

(4.31) KxN = rtv ,

has to be solved in order to compute the Newton step, sN. The defect correction process is described by the iteration

(4.32)

where/_ and R define a splitting of K, i.e., t72+ R = K. Convergence of the solution process (4.32) is governed

by the singular values of the operators .A4o, M;, and .M derived in Sections 3.3.1, 3.3.2, and 3.3.3. Their discrete

counterparts Mo, Mr, and M are analyzed with local mode analysis in Section 4.7. Convergence of the outer loop

depends on the spectrum p(Mo) = p(I - (H + Luu cP) -1 H). Convergence in the inner loop is governed by

p(MI) p((I + _p)-I 1= (L_,_H - I)). If only one inner iteration is done, we investigate p(M) = p(L_)_H - I).

One specific choice of T' was given in Section 4.5, motivated by the local mode analysis of the differential operators.

The corresponding matrix is

1
(4.33) P_ = _,, D_ g.

1 M_

Analyzing further the finite difference equations, the local mode analysis in Section 4.7 motivates secondly to use the

matrix

(4.34) h2 M_¢) Dxx,N) Dxx,N.p2=_(I(I_M_)/+_T(1 - 5 2 -1

The main computational work in the defect correction process with the splittings defined in Sections 3.3.1, 3.3.2,

and 3.3.3 is the solve with h4, and its adjoint. This is the solution of the linearized state equation and of the adjoint

equation, which amounts to the solution of two linear PDEs in our example. On the discrete level, he is represented

by A, and the main computational work in each iteration is the solve with A and A T.
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4.9. A Preconditioned Krylov Subspace Method. Linear systems like the above (4.31) can be solved with

Krylov subspace methods, e.g., the well-known Krylov subspace method for general matrices GMRES, see [23].

However, with ill-conditioned problems, as the one given in Equations (4.2) and (4.3), the number of steps these

methods require can be as high as the dimension of the linear system, if they do not fail altogether. A high number

of steps usually presents an unacceptable computational effort. However, Krylov subspace methods can be very fast

and efficient for well-conditioned systems, cf. [25], [29]. Under certain assumptions, see [6], superlinear convergence

can be proven for GMRES. In the following we will see that the results furnished by the local mode analysis for the

modified system defect correction can enhance the performance of preconditioned GMRES iterations.

The preconditioner we use is closely related to the splittings we propose for the defect correction; it is in fact

identical to the splitting matrix /_" introduced in Section 3.2.3. Thus, the linear system (4.31) is replaced by the

preconditioned system

(4.35) R -1 KXN = R -1 rN.

In each iteration of the preconditioned GMRES, the matrix-vector-product/_--1 K z = z + must be computed. This

can be done successively by solving three linear subsystems, in a similar way as described in Section 3.2.4. In this

respect, the work required in one GMRES iteration is roughly the same as in one defect correction iteration, i.e., one

solve with A and one solve with A T (see [4]). However, the implementation of GMRES is more difficult than that of

the defect correction process. For example, re-orthogonalization, which can be very costly as well, is often necessary.

In addition, storage requirements increase as the iteration progresses, thus rendering the method unattractive of very

large problems. For these issues see, e.g., [23], [14].

The eigenvalues of the preconditioned system matrix/_'-1 K are bounded below in absolute value by 1. The

number ofeigenvalues distinct from 1 are at most n, where n is the number of design variables. For these results see [4].

Since the performance of GMRES, similar to that of other Krylov subspace methods, depends on the eigenvalue

distribution of the underlying system matrix (see, e.g., [6]), the theory indicates that GMRES will take not more than

n + 1 steps. The numerical results are described in the following Section 4.10.

4.10. Numerical Results. In the numerical tests, we did not restrict the design variable, u(x), to the subspace of

sin functions, thus extending the computations beyond the theoretical treatment in Section 4.3.

We show results of the defect correction process for the case of one inner iteration as described in Section 3.2.3.

The system is modified with P1 and P2 defined in (4.33) and (4.34), respectively. For the parameter M_, the values

0.0, 0.1, 0.5, 0.9 are used in the computations. We consider the combination of cost function parameters r/1 = 1.0,

r/2 = 0.0, and r/1 = 1.0, _ = - 1.0. For the same combinations of parameters, GMRES is tested on the preconditioned

system/_-IK. We do not give the convergence history for unpreconditioned GMRES, but state that the number of

iterations required for convergence is almost equal to the dimension 2m + n of the system in all considered cases.

In Figures 5.1 and 5.2, typical convergence behavior of the defect correction process and preconditioned GMRES

can be seen. The figures depict the main results, the small and mesh-independent convergence rates of the defect

correction process that are exhibited fight from the beginning of the iterations, and the improvements in GMRES

achieved with the suggested preconditioning.

In the tables, results are shown for systems of dimension 54, which corresponds to a 4 × 4 grid, up to dimension

8514, which is a grid of 64 × 64 points. We always chose the discretization in y-direction equal to the discretization

in z-direction and refer to this number by the dimension n of the design space. The number m of state variables is

given as m = (n + 1) 2.

Stopping criterion for all iterations is a threshold 10- 5 for the 12-norm of the residual, i.e., we stop if the following
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requirementismet,

i 2m+n

1
(K - <

IIKXN--rNIII2= 2m+n _+1
10 -5

Performance of the defect correction process is shown in Tables 5.3 and 5.4. In the considered cases we only allow

for one inner iteration. For the choice of cost function parameters rh = 1.0, r/2 = 0.0 in Table 5.3, the terms L_,u, Lu¢

in K vanish. This does not only simplify the convergence analysis, but also often admits a faster numerical solution

than the second choice of nonzero r_. This is easily seen by a comparison with Table 5.4. The dimension of the

design space, n, and of the entire system are given together with the numerical results for P1 and P2 defined in (4.33)

and (4.34), respectively. For both choices of P, the number of steps until solution and the CPU required by the iterative

process are given. The convergence rate, the ratio of successive errors, is the asymptotic convergence rate valid at the

end of the defect correction iterations. This rate is approximately a constant throughout the defect correction process

for given parameters and grid. The largest eigenvalue of the matrix M defined by the splitting is a close upper bound

for the convergence rate. The computations are done for four different parameters Mo_, M_ = 0.0, 0.1,0.5, 0.9.

Although the original system becomes increasingly ill-conditioned as M_ approaches 1, the modified system defect

correction still performs well for M_ = 0.9. The convergence of this defect correction is mesh-independent. The

asymptotic convergence rates, in the limit of mesh-size going to zero, furnished by the local mode analysis for each

specific combination of parameters is given in Table 5.5. The discrepancy between the results of the local mode

analysis and the actual convergence rates of the defect correction process is due to the fact that the considered domain

is finite, which is not taken into account by the local mode analysis performed here.

Performance of the preconditioned GMRES is shown in Tables 5.2 and 5.1. Again, the dimensions of the design

space and of the entire system are given together with the number of steps until solution and the required CPU. It

can be seen that the required CPU times for iterations of preconditioned GMRES and of the defect correction process

are of the same order of magnitude. Since the convergence rate of GMRES is in general not constant throughout the

iteration, it is not considered in the tables. Qualitatively, the convergence rate is depicted in Figure 5.1.

In our computations with GMRES we have not only considered P1 and P2 given in (4.33) and (4.34), but also

P = 0, i.e., the preconditioner/_ with the entry Lu,o = Luu. It can be seen that the number of steps with this

preconditioner roughly equals n/2 (Table 5.2, L¢_ = 0, Lu¢ -- 0) or n (Table 5.1, L_u _ O, Lu¢ _ 0), respectively.

Investing the computational effort of introducing P1 or P2 as suggested by the local mode analysis pays out in a low

and mesh-independent number of iterations.

All computations were done with Matlab on a SUN 2 X UltraSPARC-II with 2Gb RAM.

5. I)iseussi[m and Concluding Remarks. We propose a modified defect correction process to solve efficiently

the (KKT-)system of equations composed of the necessary optimality conditions for optimization problems governed

by state equations. The new method is simple to apply and embed into existing codes. It requires to solve successively

the linearized state and the costate (adjoint) equations with different right hand sides in each iteration. These linear

equations are obtained by first modifying the KKT system, K:, with the introduction of a "preconditioning" operator

T _, and then splitting the system into two parts, K: =/C(P) + _(P). The solution is obtained by a defect correction

process that requires one solve with the operator/C(P) in each iteration. Convergence theory is provided in the

paper for the different splittings that we propose. We also suggest to use the operator/C(P) as a preconditioner

for GMRES. The introduction of the operator 3° is crucial for fast convergence. We advocate to use the structure

induced by the governing PDE. This can be done by a local mode analysis of either the PDE, or of its discretized

equations. We test both the defect correction process and the preconditioned GMRES on a model problem that mimics

an aerodynamic shape optimization problem. We obtain for both methods fast and mesh-independent convergence.
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Thenumericalresultsareconsistentbothwiththeconvergencetheoryin thepaperandwiththeapproximatedlocal
modeanalysisfortheasymptoticconvergencerate.Anextensionof theapproachtooptimizationproblemswith
inequalityconstraintswill betreatedelsewhere.Anotherapplicationmightbetheareaof multidisciplinarydesign
andoptimizationproblems.Whenconsideringalargesystemofequations,obtainedforexamplein thoseproblems,
asplittingof theKKTsystemcanbeappliedtwice,oncetodecouplethelargemultidisciplinaryKKTsysteminto
subsystems[1], andasecondtimeto solveefficientlyeachof thesubsystems.Suchamethodmightrequirethe
introductionofanoperatorT_ for the different subsystems as well as for the large system.
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TABLE5.1
Performance of preconditioned GMRES for cost function parameters rll = 1.0, rl2 = - 1.0.

4

8

16

32

64

n

4

8

16

32

64

n

4

8

16

32

64

n dim

54

170

594

2210

8514

dim

54

170

594

2210

8514

dim

54

170

594

2210

8514

#it

6

10

18

32

57

#it

6

10

18

32

57

#it

6

10

18

33

59

Po

CPU in s

2.00e-01

1.80e-01

8.20e-01

6.60e+00

8.26e+01

Po

CPU in s

8.00e-02

1.70e-01

7.50e-01

6.51 e+00

8.36e+01

Po

CPU in s #it

8.00e-02 6

1.70e-01 6

7.50e-01 6

6.71e+00 6

8.68e+01 6

(Moo = 0.0)

P1

#it CPU in s

6[ 9.00e-02

6 [ 9.00e-02

6 4.10e-O1

7 3.10e+O0

7 3.29e+01

(Moo = 0.1)

P1

#it ] CPUins

6 4.00e-02

6 9.00e-02

6 [ 3.80e-01

7 2.64e+00

7 2.46e+01

(Moo = 0.5)

P1

CPU in s

5.00e-02

8.00e-02

3.70e-01

2.63e+00

2.38e+01

#it

6

7

7

6

6

#it

6

7

7

6

6

#it

6

6

6

6

6

P2

CPU in s

9.00e-02

1.00e-01

4.40e-01

3.12e+00

3.17e+01

P2

CPU in s

4.00e-02

1.00e-01

4.00e-01

2.72e+00

2.48e+01

P2

CPU in s

5.00e-02

1.00e-01

4.00e-01

2.74e+00

2.52e+01

4

8

16

32

64

n dim

54

170

594

2210

8514

(Moo = 0.9)

P0

#it CPU in s

6 9.00e-02

10 1.60e-O 1

18 7.20e-01

34 6.75e+00

66 9.37e+01

P1

#it CPU in s

5 5.00e-02

6 8.00e-02

6 3.20e-01

6 2.48e+00

6 2.32e+01

#it

5

6

6

6

6

P_

CPU in s

5.00e-02

9.00e-02

3.70e-01

2.54e+00

2.43e+01

25



TABLE 5.2

Performance of preconditioned GMRES for cost function parameters _71 = 1.0, 72 = 0.0.

32

64

nIiml I4 54

8 170 6

16 594 10

2210

8514

n

4

8

16

32

64

n

4

8

16

32

64

Po

CPU in s

8.00e-02

1.30e-01

5.30e-01

183 4"19e+00
5.30e+01

(Mo_ = 0.0)

Pl

#it CPU in s

4 4.00e-02

6 8.00e-02

6 3.40e-01

5 2.55e+00

4 2.34e+01

dim #it

54 4

170 6

594 10

2210 18

8514 33

Po

CPU in s

8.00e-02

1.30e-01

5.30e-01

4.23e+00

5.31e+01

(M_ = 0.1)

P1

#it [ CPU in s

4 I 4.00e-02

3.50e-01

2.49e+00

2.35e+01

dim54

170 6

594 10

2210 18

8514 34

(Mo_ = 0.5)

Po

CPU in s

8.00e-02

1.30e-01

5.20e-01

4.21e+00

5.35e+01

P1

#it CPU in s

4 4.00e-02

6 8.00e-02

6 3.60e-01

5 2.48e+00

4 2.36e+01

P2

#it CPU in s

4 3.00e-02

4 6.00e-02

4 3.00e-01

4 2.18e+00

4 2.15e+01

P2

#it CPU in s

3.00e-02

6.00e-02

2.90e-01

4 2.20e+00

4 2.14e+01

P2

#it CPU in s
i

4 4.00e-02

4 7.00e-02

4 2.90e-01

4 2.15e+00

4 2.15e+01

n

4

8

16

32

64

dim

54

170i

594

2210

8514

#it

4

6

10

18

34

Po

CPU in s

7.00e-02

1.30e-01

5.20e-01

4.20e+00

5.53e+01

(M_ -- 0.9)

P1

#it CPU in s

4 3.00e-02

5 8.00e-02

5 3.20e-01

5 2.37e+00

5 2.29e+01

#it

4

5

P2

CPU in s

4.00e-02

7.00e-02

4 3.10e-01

4 2.28e+00

4 i 2.25e+01
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n dim

4 54

8 170

16 594

32 2210

64 18514

n l dim

4 54

8 170

16 594

32 2210

64 18514

n dim

4 54

8 170

16 594

32 2210

64 8514

n dim

4 54

8 170

16 594

32 2210

64 8514

TABLE5.3

Pe_ormanceofDCPforcostfunct_n parame_ _1 = 1.0, rr2= 0.0.

#it

12

12

12

11

10

#it

12

12

12

11

10

#it

11

11

10

10

9

#it

10

9

9

9

9

P

(Mo_ = 0.0

CPU in s conv.rate

1.70e-01

2.70e-01

1.03e+00

6.98e+00

6.89e+01

P

4.4219e-01

4.8270e-01

4.8478e-01

4.8348e-01

4.8118e-01

(M_ = 0.1)

CPU in s conv.rate

1.60e-01

2.70e-01

1.02e+00

6.92e+00

6.99e+01

P

4.3988e-01

4.8033e-01

4.8238e-01

4.8109e-01

4.7879e-01

(M_ = 0.5)

CPU in s conv.rate

1.50e-01

2.70e-01

9.20e-01

6.58e+00

6.65e+01

P

3.7660e-01

4.1315e-01

4.1261e-01

4.1312e-01

4.1044e-01

(M_ = 0.9

CPU in s conv.rate

1.40e-01

2.20e-01

8.50e-01

6.16e+00

6.53e+01

2.4531e-01

2.1838e-01

2.1129e-01

2.0949e-01

2.0904e-01

/'2

CPU in s conv.rate#it

4

4

4

4

3

5.00e-02

8.00e-02

3.10e-01

2.69e+00

2.76e+01

8.9447e-03

7.2777e-03

6.8858e-03

6.7893e-03

6.7653e-03

t'2

#it

4

4

4

4

3

CPU in s conv.rate

5.00e-02

8.00e-02

3.20e-01

2.69e+00

2.79e+01

9.2148e-03

7.5113e-03

7.1105e-03

7.0118e-03

6.9873e-03

P2

#it

4

4

4

4

4

CPU in s conv.rate

5.00e-02

8.00e-02

3.10e-01

2.65e+00

3.06e+01

1.9846e-02

1.6904e-02

1.6202e-02

1.6028e-02

1.5985e-02

/'2

#it

10

10

9

9

9

CPU in s conv.rate

9.00e-02

1.50e-01

5.00e-01

3.91e+00

4.31e+01

2.4010e-01

2.2788e-01

2.2484e-01

2.2409e-01

2.2390e-01
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TABLE 5.4

Performance of DCP for cost function parameters ill : 1.0, r12 = - 1.0.

16

32

64

n

4

8

16

32

64

8

16

32

64

n

4

8

16

32

64

n dim

4 54

8 ! 170

594

2210

8514

#it

13

17

20

21

21

(Mo_ = 0.0)

P

CPU in s conv.rate

2.90e-01

3.70e-01

1.62e+00

1.17e+O1

1.19e+02

3.8568e-01

4.8401e-01

5.2462e-01

5.3696e-01

5.4020e-01

#it
I

12

17

20

21

21

I
dim i

i

54

170

594

2210

8514

P1

#it I CPU in s

13 1.80e-O1

17

20

21

21

3.8366e-01

3.70e-01 4.8193e-01

1.58e+00 5.2247e-01

1.13e+O1 5.3484e-01

1.13e+02 5.3811e-01

(Mo_ = 0.1)

conv.rate _112

20

n dim

4

#it PCPU in s
II

54 12

170 15
II

594 II 17

2210 18

8514 19

(M_ = 0.5

1.70e-O1

3.40e-01

1.39e+00

9.90e+00

1.04e+02

cony.rate

3.3273e-01

4.2961e-01

4.6841e-01

4.8126e-01

4.8552e-01

II

dim
II

54 IJ

170

594

2210

8514

(Mo_ = 0.9

P1

#it

14

15

16

16

16

CPU in s conv.rate

1.90e-Ol

3.40e-01

1.30e+O0

9.07e+00

9.34e+01

3.6261e-01

4.1422e-01

4.3635e-01

4.4537e-01

4.4926e-01

CPU in s conv.rate

1.60e-Ol

2.20e-01

9.40e-01

7.19e+O0

7.51 e+O1

3.5942e-01

4.9946e-01

5.5028e-01

5.6899e-01

5.7651e-01

P2

CPU in s conv.rate

21

21

1.00e-O1

2.30e-01

9.40e-01

6.94e+00

7.28e+01

3.5812e-01

4.9748e-01

5.4815e-01

5.6681e-01

5.7432e-01

#it CPU in s

11

15

17

18

18

1.00e-O1

2.0(0-01

8.50e-01

6.18e+O0

6.56e+01

conv.rate

3.2583e-01

4.4778e-01

4.9393e-01

5.1115e-01

5.1815e-01

P2

CPU in s conv.rate#it

14

16

16

16

16

1.10e-O1

2.20e-01

7.90e-01

5.65e+00

6.00e+O1

3.7223e-01

4.2473e-01

4.4671e-01

4.5569e-01

4.5958e-01
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TABLE 5.5

LMA Prediction of asymptotic convergence rates for the DCP

(771 : 1.0 in all cases)

M_ _=0.0 _=-1.0 _=0.0 _=-1.0

0.5000

0.4975

0.4286

0.1597

0.0

0.1

0.5

0.9

0.5781

0.5757

0.5124

0.2723

0.0

0.0

0.0

0.0

0.5781

0.5757

0.5124

0.2723
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